
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, Apr. 2024 843
Copyright ⓒ 2024 KSII

This research was supported by Basic Science Research Program through the National Research Foundation of
Korea (NRF), funded by the Ministry of Education(2021R1I1A3052605).

http://doi.org/10.3837/tiis.2024.04.002 ISSN : 1976-7277

A Novel and Effective University Course
Scheduler Using Adaptive Parallel Tabu

Search and Simulated Annealing

Xiaorui Shao1, Su Yeon Lee2, and Chang Soo Kim3*
1 Industrial Science Technology Research Center, Pukyong National University, Busan 608737, Korea

[e-mail: shaoxiaorui@pukyong.ac.kr]
2 CEO, JRTech Co., Ltd, Ulsan, 44781 Republic of Korea

[e-mail : sylee@jungrok.co.kr]
3 Information Systems, Pukyong National University, Busan, 608737 South Korea

[email :cskim@pknu.ac.kr]
*Corresponding author: Chang Soo Kim

Received October 23, 2023; revised January 8, 2024; accepted March 11, 2024;

published April 30, 2024

Abstract

The university course scheduling problem (UCSP) aims at optimally arranging courses to
corresponding rooms, faculties, students, and timeslots with constraints. Previously, the
university staff solved this thorny problem by hand, which is very time-consuming and makes
it easy to fall into chaos. Even some meta-heuristic algorithms are proposed to solve UCSP
automatically, while most only utilize one single algorithm, so the scheduling results still need
improvement. Besides, they lack an in-depth analysis of the inner algorithms. Therefore, this
paper presents a novel and practical approach based on Tabu search and simulated annealing
algorithms for solving USCP. Firstly, the initial solution of the UCSP instance is generated by
one construction heuristic algorithm, the first fit algorithm. Secondly, we defined one union
move selector to control the moves and provide diverse solutions from initial solutions,
consisting of two changing move selectors. Thirdly, Tabu search and simulated annealing (SA)
are combined to filter out unacceptable moves in a parallel mode. Then, the acceptable moves
are selected by one adaptive decision algorithm, which is used as the next step to construct the
final solving path. Benefits from the excellent design of the union move selector, parallel tabu
search and SA, and adaptive decision algorithm, the proposed method could effectively solve
UCSP since it fully uses Tabu and SA. We designed and tested the proposed algorithm in one
real-world (PKNU-UCSP) and ten random UCSP instances. The experimental results
confirmed its effectiveness. Besides, the in-depth analysis confirmed each component’s
effectiveness for solving UCSP.

Keywords: Timetabling, scheduling, metaheuristic algorithm, university course scheduling
problem

844 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

1. Introduction

University course scheduling problem (UCSP), also called timetabling, is vital to
implementing intelligent teaching systems in the university to improve efficiency and reduce
labor costs [1], [2]. Its purpose is to arrange teaching resources such as professors, students,
and rooms within a fixed timeslot to satisfy several constraints [3], [4], and it has been proved
to be an NP-complete problem [5]. In previous years, the university staff solve UCSP by hand.
They first arrange the simple course and then the completed one, which takes much time and
is easily trapped and difficult to extricate oneself since UCSP’s continuance. If one fails, the
staff needs to adjust all of the others. In addition, with the increasing number of faculties,
students, and courses, the real UCSP is increasingly complex. Solving complex UCSP
instances by hand is difficult and even not possible. Therefore, one automatic and accurate
UCSP method is necessary.

Similar to other optimization problems, such as job shop scheduling problem (JSSP) [6]–
[8], route planning (RP) [9], and traveling salesman problems (TSP) [10], [11], UCSP is one
optimization problem [12]. They aim to develop one algorithm that can attach the optimal
goals. Especially, JSSP is to arrange all jobs at corresponding machines with a minimum
make-span; DP breaks one huge-mode problem into several small groups to find the shortest
path; and UCSP arranges all teaching resources, including courses, rooms, faculties, students,
and timeslots by minimizing one defined fitness score. The only difference between UCSP
and JSP is that UCSP has some hard constraints to be satisfied and cannot be broken out.
Meanwhile, some soft constraints should be satisfied most during the solving. Therefore, the
methods used for solving JSSP and DP also could be applied to solving UCSP. This manuscript
mainly gives the related references for JSSP and UCSP since they are highly related.

The current methods for solving the optimization mentioned above problems mainly
contain two branches. One is the exact approach [13], [14], which aims at finding the best
solution through modeling one complex mathematical function. Another is the approximation-
based approach, which aims at finding one near-optimal solution. The exact methods contain
mathematical programming (MP) methods. E.g., Gomes et al. [15] used integer linear
programming (ILP) to solve one of JSSPs, the flexible job shop scheduling problem (FJSSP).
Boland et al. proposed a new ILP to solve UCSP [2]. Even though the exact approach could
give optimal solutions for the above optimization problems, it cannot solve large instances to
satisfy modern universities' needs since it requires numerous computation and time resources
[16]. Therefore, most current research for solving the above optimization problems focuses on
approximation-based methods.

The approximation-based methods for solving the above optimization methods could be
divided into meta-heuristic and learning-based methods. The recent popular learning-based
method could solve UCSP and JSP faster but relies on meta-heuristic approaches to generate
labels. Hence, the performance is still far from meta-heuristic methods [7], [8], [17]. As a
result, this manuscript mainly investigated the meta-heuristic methods for solving JSSP and
UCSP. The metaheuristic methods contain genetic algorithm (GA) [18], Tabu search [19],
simulated annealing (SA) [20], particle swarm optimization (PSO) [21], etc. E.g., Kuri [22]
proposed a new island GA to solve JSSP, and the experiments on 52 JSSP data sets confirmed
its effectiveness; Dehghan-Sanej et al. [14] utilized SA for medium- and large-sized JSSP
instances; Xu et al. [23] tested the effectiveness of GA for hydro unit economic load dispatch;
A hybrid method based on GA and Tabu are proposed to solve flexible JSSP problems [16],
in which GA is used to find the global solution path, the found global path is fed into Tabu
search to find the best local path. Besides, several pieces of research related to PSO for JSSP

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 845

could be found from [24]–[26].
Compared to the application of meta-heuristic methods in the domain of JSSP, the

references related to UCSP are relatively few. Mainly, Abdullah et al. [27] proposed a GA-
based algorithm by minimizing the number of timetable violations of soft constraints. Awad
et al. [28] proposed an adaptive Tabu search algorithm to solve large-scale UCSP instance.
Leite et al. [29] proposed a fast SA (FastSA) to solve an examination timetable problem, the
experimental results proved that it uses 17% less evaluations, on average, and a maximum of
41% less evaluations on one instance compared to standard SA. Chen et al. [30] utilized PSO
with local search to solve timetable problem. Besides, a recent study [31] combined GA and
machine learning methods to solve UCSP, in which GA is used to generate the intimal solution,
and a machine learning algorithm is used to detect if these models can accurately approximate
the evaluation function for UCSP. Turabieh et al. [32] applied fish swarm algorithm to solve
this problem on Socha data set. One Tabu-based algorithm with random partial neighborhood
search is developed in [33] to solve UCSP. More details about the UCSP's definition, trends,
and perspectives can be found in [34], [35]

The above-mentioned metaheuristic approaches already obtained acceptable solutions.
However, they only use one algorithm to select the next step in the solution, limiting its
performance. Besides, they lacked more comprehensive and in-depth analysis to demonstrate
their effectiveness. Therefore, this paper proposes a new approach that combines Tabu search
and SA in a parallel mode to solve UCSP effectively and quickly. The proposed method first
generates the initial solution by the first fit algorithm, which saves much time compared to the
random initialization. Then, we designed one union move selector that consists of two
changing move selectors to provide diverse solutions to improve performance. The diverse
solutions from two changing move selectors are fed into Tabu search and SA algorithms in
parallel to filter out unacceptable moves that break out some soft constraints. At last, we
designed an adaptive decision algorithm to choose the best next-step move from Tabu and SA
solutions to construct the final solution path. Benefiting from the excellent design of the
proposed method structure, it generates a robust initial solution and diverse moves. It fully
uses Tabu search and SA algorithms to solve UCSP effectively.

Moreover, we illustrate the proposed method’s advantages compared to the current
methods, as listed in Table 1. The table showed that the exact approach is the most
straightforward and optimal but is time- and computation-consumption. Besides, it cannot deal
with large UCSP instances. The existing meta-heuristic methods are near-optimal, but they
consider one single algorithm, except [16] utilized one cascade GA+Tabu, so the performance
can still be improved. The learning-based method is fast but needs to be more accurate since
it relies on other metaheuristic algorithms. In contrast, the proposed method is one near-
optimal method, whose speed is faster, the performance is higher than the existing
metaheuristic algorithms due to the excellent design of the first fit and parallel mode of Tabu
and SA algorithms, which has been proved in Section 3.

The main contributions of this work are summarized as follows:
• We proposed a novel and practical framework to solve UCSP problems effectively and

fastly. Its effectiveness has been confirmed on one real-world UCSP data set and ten
random data sets.

• A parallel structure of Tabu and SA is designed to help the proposed method generate
diverse moves to improve performance. Besides, it is easy to apply in other optimization
tasks such as JSSP, RP, and TSP.

• We proposed a new evaluation metric for validating the UCSP algorithm, called
normalized score in Eq. (3), which normalizes all soft constraints into one same level to
compare them fairly.

846 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

• We did an in-depth analysis of the proposed method to confirm each component’s
effectiveness.

Table 1. The comparison between the proposed method for UCSP and others
Methods References Advantages Disadvantages

Exact [2], [15] Simple and
Optimal

Time- and
computation-

consumption cannot
deal with large
UCSP instances

Approximation Metaheuristic

[14], [16], [22],
[23], [24]–[26],
[27], [28], [29],

[30], [33]

Near-optimal

Single algorithm and
performance is still

can be improved

Learning [7], [8], [17], [31] Much Faster Not accurate

Proposed -
Fast, combined
method, near-

optimal

-

The remainder of this manuscript is arranged as follows. Section 2 introduces the proposed

method in detail. In Section 3, we verified the proposed method on one real-world UCSP
instance and did an in-depth analysis to discuss the proposed method. Section 4 concludes this
manuscript.

2. The Proposed Methods

2.1 Problem Definition
UCSP is to arrange teaching materials including courses 𝐶𝐶 = {𝐶𝐶1, 𝐶𝐶2. . . ,𝐶𝐶𝑛𝑛, … ,𝐶𝐶𝑁𝑁 }, faculties
𝑃𝑃𝑃𝑃 = {𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2, … ,𝑃𝑃𝑃𝑃𝑝𝑝 … ,𝑃𝑃𝑃𝑃𝑃𝑃}, students 𝑆𝑆 = {𝑆𝑆1,𝑆𝑆2, … , 𝑆𝑆𝑞𝑞 … , … , 𝑆𝑆𝑄𝑄} to a set of rooms 𝑅𝑅 =
{𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑜𝑜, … ,𝑅𝑅𝑂𝑂}, timeslots 𝑇𝑇𝑆𝑆 = {𝑇𝑇𝑆𝑆1,𝑇𝑇𝑆𝑆2, … ,𝑇𝑇𝑆𝑆𝑚𝑚, … ,𝑇𝑇𝑆𝑆𝑀𝑀} accurately. Where 𝑁𝑁, 𝑃𝑃,
𝑄𝑄, 𝑂𝑂, and 𝑀𝑀 are corresponding courses, faculty, students, rooms, and timeslot numbers. It
requires meeting all hard and most soft constraints during the solving process. If the solution
breaks out of any hard constraints, this solution will be treated as an infeasible solution. One
good solution satisfies all hard constraints and has the highest scores for all soft constraints.

We utilized a set of problem cases to describe UCSP in this manuscript. Firstly, five hard
constraints are given:

H1: RoomTimeHardConflict. One room 𝑅𝑅𝑜𝑜 can accommodate at most one course at the
same timeslot 𝑇𝑇𝑆𝑆𝑚𝑚.

H2 CourseTypeHardConflict: The room 𝑅𝑅𝑜𝑜 should meet the course's functional
requirements 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡. For example, some courses require devices such as computers and
functional machines, while others do not.

H3 RoomSizeHardConflict: The room size 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 must be equal to or larger than the
applied student's numbers 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛.

H4 TeachingHardConflict: One faculty 𝑃𝑃𝑃𝑃𝑝𝑝 can teach at most one course 𝐶𝐶𝑛𝑛 at the same
timeslot 𝑇𝑇𝑆𝑆𝑚𝑚.

H5 StudentHardConflict: One student 𝑆𝑆𝑞𝑞 can only attend one course 𝐶𝐶𝑛𝑛 at most at the
same time 𝑇𝑇𝑆𝑆𝑚𝑚.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 847

Secondly, the five soft constraints are listed as follows:
S1 FacultyRoomStability: The faculty 𝑃𝑃𝑃𝑃𝑝𝑝 prefers to teach in one fixed room 𝑅𝑅𝑜𝑜.
S2 FacultyTimePreference: The faculty 𝑃𝑃𝑃𝑃𝑝𝑝 has his preferred time duration 𝑇𝑇𝑆𝑆 for each

course 𝑅𝑅𝑜𝑜.
S3 FacultyTeachingMode: The faculty 𝑃𝑃𝑃𝑃𝑝𝑝 prefers to teach in a sequential mode.
S4 StudentStudyingMode: The student 𝑆𝑆𝑞𝑞 dislikes studying in a sequence mode.
S5 CourseDepartmentConsistency: The course 𝐶𝐶𝑛𝑛 and room 𝑅𝑅𝑜𝑜 should be consistent

with its department.
According to the definition of UCSP, we can write the optimization function during

solving, as shown in Eq. (1). Where 𝑆𝑆ℎ𝑎𝑎𝑛𝑛𝑎𝑎 is the score of hard constraints, which is equal to
zero by default. If the solution breaks out any hard constraints (occurring hard constraints
conflicts), we will give one negative score, indicating that this solution is infeasible. It ensures
that all given solutions are feasible. The 𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑡𝑡 is the score for soft constraints, the sum of five
soft constraints: 𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆2,𝑆𝑆𝑠𝑠3, 𝑆𝑆𝑆𝑆4 , and 𝑆𝑆𝑆𝑆5 . The coefficients 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4 , and 𝑎𝑎5 illustrate
each soft constraint's reward/penalize level. Especially if the solution satisfies one soft
constraint, the 𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑡𝑡 will be given one reward (positive value) with different coefficients. In
contrast, if the solution breaks out one soft constraint, the 𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑡𝑡 will be penalized one negative
value with corresponding weights. Generally, 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 𝑎𝑎4 = 𝑎𝑎5 = 1(𝑃𝑃𝑠𝑠𝑟𝑟𝑎𝑎𝑃𝑃𝑠𝑠)/
−1(𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠), and its influence will be discussed later in Section 3.5.

𝑆𝑆𝑆𝑆𝑟𝑟𝑃𝑃𝑠𝑠 = 𝑆𝑆ℎ𝑎𝑎𝑛𝑛𝑎𝑎 + 𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑡𝑡
= 0 + 𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠𝑡𝑡
= 𝑎𝑎1𝑆𝑆𝑆𝑆1 + 𝑎𝑎2𝑆𝑆𝑆𝑆2 +𝑎𝑎3𝑆𝑆𝑆𝑆3 + 𝑎𝑎4𝑆𝑆𝑆𝑆4 +𝑎𝑎5𝑆𝑆𝑆𝑆5 (1)

2.2 UCSP Objects
The UCSP solution refers to three objects: Room 𝑅𝑅, Course 𝐶𝐶, and Timeslot 𝑇𝑇𝑆𝑆, and they are
defined in Table 2. Significantly, the UCSP factor (Room 𝑅𝑅 and Timesolt 𝑇𝑇𝑆𝑆) cannot change
during solving while Entity (Course 𝐶𝐶) changes, and Decision object (Timetable 𝑇𝑇𝑠𝑠𝑎𝑎𝑇𝑇𝑝𝑝𝑠𝑠)
gives the final solution and the corresponding score {𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡 , 𝑆𝑆𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡 , 𝑠𝑠𝑆𝑆𝑟𝑟𝑃𝑃𝑠𝑠}. The term
‘id’ is used to identify each sample of each object, the Fact object Room 𝑅𝑅 =
{𝑝𝑝𝑠𝑠: 𝑝𝑝𝑠𝑠𝑠𝑠,𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃,𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃}, where 𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠 is the course
name, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 records some the functional type for each room, size is the room capacity,
and department records its owner. Fact Timeslot 𝑇𝑇𝑆𝑆 records the day of the week dayofweek,
course start 𝑠𝑠𝑠𝑠𝑎𝑎𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡, and end time 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡. Course 𝐶𝐶 consists of its name 𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠, teaching
faculty 𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓, department department, student group 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝, and applied number
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑡𝑡𝑛𝑛, course type 𝑆𝑆𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡, faculty preferable time 𝑃𝑃𝑠𝑠𝑓𝑓𝑠𝑠𝑃𝑃𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡, corresponding
timeslot 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠, and room 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟.

Table 2. Defined objects.
Object Type Variables

Room 𝑅𝑅 Fact {𝑝𝑝𝑠𝑠: 𝑝𝑝𝑠𝑠𝑠𝑠,𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃,𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃}
Timeslot 𝑇𝑇𝑆𝑆 Fact {𝑝𝑝𝑠𝑠: 𝑝𝑝𝑠𝑠𝑠𝑠,𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑠𝑠𝑠𝑠𝑎𝑎𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡:𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡:𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠}

Course 𝐶𝐶 Entity {𝑝𝑝𝑠𝑠: 𝑝𝑝𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓: 𝑠𝑠𝑠𝑠𝑃𝑃,𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝: 𝑠𝑠𝑠𝑠𝑃𝑃,
𝑆𝑆𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡: 𝑠𝑠𝑠𝑠𝑃𝑃, 𝑝𝑝𝑃𝑃𝑠𝑠𝑓𝑓𝑠𝑠𝑃𝑃𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡: 𝑇𝑇𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠, 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠: 𝑇𝑇𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠, 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟:𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟

Timetable
𝑇𝑇𝑠𝑠𝑎𝑎𝑇𝑇𝑝𝑝𝑠𝑠

Decision {𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡 , 𝑆𝑆𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡 , 𝑠𝑠𝑆𝑆𝑟𝑟𝑃𝑃𝑠𝑠}

848 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

The pseudo-code utilized the defined objects to control hard and soft constraints, as in
algorithms 1 and 2. Breaking out the constraint will be penalized by adding one negative value,
and satisfying the constraint will be rewarded with one positive value, as described in Eq. (1).
Breaking out any hard constraint means the solution is infeasible. In the algorithms, the UCSP
solution course list that recorded some course objects {𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝑠𝑠, … , 𝐶𝐶𝑁𝑁} controls
corresponding constraints. The operation “. ” means object’s attributes. Moreover, we defined
the faculty-liked and student-disliked time duration as 12 hours, which is flexible and can be
changed into any proper time duration.

Algorithm 1: Pseudo-code for controlling hard constraints
1. Given the UCSP instance solution course list courselist={𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑠𝑠 , … ,𝐶𝐶𝑁𝑁}
2. If 𝐶𝐶𝑠𝑠 . 𝑆𝑆𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡! = 𝐶𝐶𝑠𝑠 . 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟. 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡:
3. Break H2 CourseTypeHardConflict.
4. If 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑡𝑡𝑛𝑛 > 𝐶𝐶𝑠𝑠. 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟. 𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠:
5. Break H3 RoomSizeHardConflict.
6. Doing join operation [courselist, courselist] = {𝐶𝐶1𝐶𝐶2,𝐶𝐶1𝐶𝐶3, … ,𝐶𝐶1𝐶𝐶𝑁𝑁 , … ,𝐶𝐶𝑠𝑠𝐶𝐶𝑗𝑗 , … ,𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁}
7. Do 𝐶𝐶𝑠𝑠𝐶𝐶𝑗𝑗 in [courselist, courselist]:
8. If 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠 = 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠 and 𝐶𝐶𝑠𝑠 . 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑗𝑗 . 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐶𝐶𝑠𝑠. 𝑝𝑝𝑠𝑠 < 𝐶𝐶𝑗𝑗 . 𝑝𝑝𝑠𝑠:
9. Break H1 RoomTimeHardConflict.
10. If 𝐶𝐶𝑠𝑠. 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠 = 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠 and 𝐶𝐶𝑠𝑠. 𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓 = 𝐶𝐶𝑗𝑗 . 𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓 and 𝐶𝐶𝑠𝑠. 𝑝𝑝𝑠𝑠 < 𝐶𝐶𝑗𝑗 . 𝑝𝑝𝑠𝑠:
11. Break H4 TeachingHardConflict.
12. If 𝐶𝐶𝑠𝑠. 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠 = 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠 and 𝐶𝐶𝑠𝑠. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝 = 𝐶𝐶𝑗𝑗. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝 and 𝐶𝐶𝑠𝑠 . 𝑝𝑝𝑠𝑠 < 𝐶𝐶𝑗𝑗. 𝑝𝑝𝑠𝑠:
13. Break H5 StudentHardConflict.

Algorithm 2: Pseudo-code for controlling soft constraints
1. Given the UCSP instance solution content course list courselist={𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑠𝑠 , … ,𝐶𝐶𝑁𝑁}
2. If 𝐶𝐶𝑠𝑠 .𝑝𝑝𝑃𝑃𝑠𝑠𝑓𝑓𝑠𝑠𝑃𝑃𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡.𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑 = 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠.𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑 or 𝐶𝐶𝑠𝑠 .𝑝𝑝𝑃𝑃𝑠𝑠𝑓𝑓𝑠𝑠𝑃𝑃𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡. 𝑠𝑠𝑠𝑠𝑎𝑎𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡!= 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠. 𝑠𝑠𝑠𝑠𝑎𝑎𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡:
3. Break S2 FacultyTimePreference.
4. If 𝐶𝐶𝑠𝑠 .𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 == 𝐶𝐶𝑠𝑠 . 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟.𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑃𝑃𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠:
5. Satisfy S5 CourseDepartmentConsistency.
6. Doing join operation [courselist, courselist] = {𝐶𝐶1𝐶𝐶2,𝐶𝐶1𝐶𝐶3, … ,𝐶𝐶1𝐶𝐶𝑁𝑁, … ,𝐶𝐶𝑠𝑠𝐶𝐶𝑗𝑗 , … ,𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁}
7. Do 𝐶𝐶𝑠𝑠𝐶𝐶𝑗𝑗 in [courselist, courselist]:
8. If 𝐶𝐶𝑠𝑠 .𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓 = 𝐶𝐶𝑗𝑗 .𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓 and 𝐶𝐶𝑠𝑠 . 𝑝𝑝𝑠𝑠 < 𝐶𝐶𝑗𝑗 . 𝑝𝑝𝑠𝑠:
9. If 𝐶𝐶𝑠𝑠 . 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟! = 𝐶𝐶𝑗𝑗 . 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟:
10. Break S1 FacultyRoomStability.
11. If 𝐶𝐶𝑠𝑠 .𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓 = 𝐶𝐶𝑗𝑗 .𝑓𝑓𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓 and 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠.𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑 = 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠.𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑:
12. If 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠. 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡 − 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠. 𝑠𝑠𝑠𝑠𝑎𝑎𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡 < 12 hours:
13. Satisfy S3 FacultyTeachingMode.
14. If 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠 = 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠 and 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝 = 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝 and 𝐶𝐶𝑠𝑠 . 𝑆𝑆𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 = 𝐶𝐶𝑗𝑗 . 𝑆𝑆𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 and

𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠.𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑 == 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠.𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑:
15. If 𝐶𝐶𝑠𝑠 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠. 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡 − 𝐶𝐶𝑗𝑗 . 𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠. 𝑠𝑠𝑠𝑠𝑎𝑎𝑃𝑃𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡 < 12 hours:
16. Break S4 StudentStudyingMode.

2.3 The Proposed Method
This manuscript proposed a novel and effective parallel Tabu and SA structure to solve

UCSP, as shown in Fig. 1. t consists of five steps: UCSP instance construction, giving initial
solution, generating possible moves, Tabu+SA filters out unacceptable moves, and selecting
the next move using an adaptive decision algorithm, respectively. Each step is explained in the
subsequent subsections.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 849

Fig. 1. The proposed parallel Tabu+SA for solving UCSP

2.2.1 UCSP Instance Construction
According to the definition of UCSP in Section 2, it generally consists of three parts: timeslot,
room, and course that describe all related teaching. A detailed description of them is shown in
Table 2. Depending on the university, each part contains unique samples to be stored in one
list object (𝑇𝑇𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡, 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡, and 𝐶𝐶𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡). We define one UCSP instance with 𝑀𝑀
timeslots, 𝑂𝑂 rooms, and 𝑁𝑁 courses, as shown in Eq. (2).

 𝑈𝑈𝐶𝐶𝑆𝑆𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑖𝑖𝑡𝑡 = �
𝑇𝑇𝑆𝑆 = {𝑇𝑇𝑆𝑆1,𝑇𝑇𝑆𝑆2, … ,𝑇𝑇𝑆𝑆𝑚𝑚, … ,𝑇𝑇𝑆𝑆𝑀𝑀}

𝑅𝑅 = {𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑜𝑜, … ,𝑅𝑅𝑂𝑂}
C = {C1, C2. . . , Cn, … , CN }

 (2)

2.2.2 Generating Initial Solution
The constructed USCP instance is fed into one construction heuristic algorithm, the first fit
algorithm [36], to generate the initial solution 𝑠𝑠𝑟𝑟𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛. The first fit arranges only one entity
course 𝐶𝐶𝑛𝑛 at once by its default order and casecondsnnot be assigned in the next round. The
algorithm is terminated after all courses are assigned, which can save much time finding a
better solution, even if it cannot ensure the optimal solution. It gives one fast available solution
to guide other algorithms to find the better solution.

2.2.3 Generating Multiple Possible Moves
The moves defined in this manuscript are to construct a new UCSP neighbor solution of the
original solution to keep the diversity of the solution to increase the performance. We
especially defined a union of change move selectors to generate the possible moves for the

850 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

next step. One is for course object 𝐶𝐶 = {𝐶𝐶1, 𝐶𝐶2. . .𝐶𝐶𝑁𝑁 } and timeslot value 𝑇𝑇𝑆𝑆 =
{𝑇𝑇𝑆𝑆1,𝑇𝑇𝑆𝑆2 …𝑇𝑇𝑆𝑆𝑀𝑀}, another one is for object course and room value 𝑅𝑅 = {𝑅𝑅1, 𝑅𝑅2 …𝑅𝑅𝑜𝑜}. The
principle of change move is automatically changing the value into another one. For example,
from C1𝑇𝑇𝑆𝑆1 to C1𝑇𝑇𝑆𝑆2 , the original solution assigns 𝐶𝐶1 at 𝑇𝑇𝑆𝑆1 while the neighbor solution
assigns it at 𝑇𝑇𝑆𝑆2. Each move selector will iterate all possible moves to the construction solution
during the solving. After two move selections, one union move selector combines 𝐶𝐶𝑛𝑛𝑇𝑇𝑆𝑆𝑚𝑚
and 𝐶𝐶𝑛𝑛𝑅𝑅𝑜𝑜 for the next step, increasing the solution's diversity in both timeslots and rooms to
improve the performance.

Algorithm 3: Tabu search to filter out unacceptable moves
Input: Possible next steps solution PS = {C1TS1 , C1TS2 … C1TSN , … , C1R1 … C1Ro}
Output: Acceptable next step solution AP ∈ PS.
Defined current solution i,
1. Randomly generate one solution i ∈ PS, set best solution s = i, Tabu list 𝐻𝐻 = {} with a

2% Entity Object length, move step 𝑟𝑟𝑠𝑠 = 7, and set iteration 𝑑𝑑 =0. Calculate the fitness
score f(s) using Eq. (1).

2. While not stop:
3. A = N(i, H) #generate the neighbors of the solution set A from H.
4. i = SelectionBestSolution(A) #set the current solution 𝑝𝑝
5. Calculate the fitness score f(i) using Eq. (1).
6. Update the H considering Tabu list length and move step 𝑟𝑟𝑠𝑠. # The Tabu list will be

full as a length of 2% of Entity Object, and one Tabu object cannot be used before seven
steps.

7. if f(i) < f(s):
8. f(s) = f(i)
9. End if
10. k = k + 1
11. End While
12. AP = s

Algorithm 4: SA algorithm to filter out unacceptable moves
Input: Possible next steps solution PS = {C1TS1 , C1TS2 … C1TSN , … , C1R1 … C1Ro}
Output: Acceptable next step solution AP ∈ PS.
Define starting temperature Ts = 1000, and the cooling ratio is 0.99.
1. Randomly generate one solution i ∈ PS , setting best solution s = i , and calculate its

fitness score f(s) by Eq. (1).
2. While not stop
3. Generate a random neighbor 𝑠𝑠′, and calculate f(𝑠𝑠′) by Eq. (1)
4. ∆E = 𝑓𝑓(𝑠𝑠) − 𝑓𝑓(𝑠𝑠′)
5. If ∆𝐸𝐸 < 0 then 𝑠𝑠 = 𝑠𝑠′

6. Else accept 𝑠𝑠′ with probability 𝑠𝑠
−∆𝐸𝐸
𝑇𝑇𝑠𝑠

7. Update 𝑇𝑇𝑠𝑠 = 𝐺𝐺(𝑇𝑇𝑠𝑠)
8. Until 𝑇𝑇𝑠𝑠<1
9. AP = s

2.2.4 Filter Out Unacceptable Moves
To select efficient moves, we designed a Parallel Tabu+SA structure to filter out unacceptable

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 851

moves generated by step 3. Mainly, Tabu search is used to find USCP's global solution that
can avoid falling into local optimal, and SA is used to find its robust solution by several steps.
This good design makes the solution take into account both the advantages of Tabu and SA
and keeps the diversity of choice to select the potential next step's move. A detailed
explanation of Tabu and SA is shown in algorithms 3 and 4.

2.2.5 Selecting Next Move
Select the next move using one adaptive decision algorithm. The algorithm selects the move
with the highest score. If Tabu and SA have similar score, they will randomly select one to
execute. To complete one USCP instance, the proposed method will run iteratively until all
courses satisfy all hard constraints and most soft constraints.

3. Experimental Verification
To verify the effectiveness of the proposed method for solving UCSP, we implement the
proposed method based on the operating system of Windows 10 with intel(R) Core(TM) i7-
7700 CPU @3.60GHz, and RAM 32.0 GB, on one real-world data set, the department of
information systems at Pukyong National University (PKNU) and ten random UCSP instances.
The programming language is Python 3.6, and the basic library is Optapy [37].

3.1 PKNU-UCSP Instance
The UCSP instance for the department of information systems at PKNU, for graduate students
only, consists of eight rooms 𝑅𝑅 = {𝑅𝑅1, 𝑅𝑅2, . . , 𝑅𝑅8} , and two functional room types are
considered: teaching room and practice room that consists of some computers. Where 𝑅𝑅1 and
𝑅𝑅4 are for practice rooms, and others are teaching rooms. The eight rooms’ capacities are
{40,40,20,25,30,20,10,40}; and the owners of these rooms are departments
{𝐷𝐷1, 𝐷𝐷4, 𝐷𝐷3, 𝐷𝐷2,𝐷𝐷2,𝐷𝐷2,𝐷𝐷2, 𝐷𝐷4 }. The courses only can be arranged from Monday to Friday.
Each day has three courses starting from 9:00 am and ending at 21:30. That is, fifteen timeslots
𝑇𝑇𝑆𝑆 = {𝑇𝑇𝑆𝑆1,𝑇𝑇𝑆𝑆2, … ,𝑇𝑇𝑆𝑆15} corresponding to 9:00-12:30, 13:00-16:30, and 18:30-21:30 for five
days are taken into account, respectively. Besides, one week has 17 courses 𝐶𝐶 =
{𝐶𝐶1,𝐶𝐶2,𝐶𝐶3, … ,𝐶𝐶17} touched by six faculties 𝑃𝑃𝑃𝑃 = {𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2, … ,𝑃𝑃𝑃𝑃6}, where 𝐶𝐶7,𝐶𝐶8,𝐶𝐶9,𝐶𝐶10,𝐶𝐶14
and 𝐶𝐶15 are practice courses and others are not; and the corresponding student groups for 17
courses are {17th, 18th, 17th, 19th, 20th, 17th, 19th, 21st, 20th, 18th, 19th, 20th, 22nd, 17th,
18th, 18th, 19th}, which indicated the students entrance year. More details of the 𝐶𝐶𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑡𝑡
object are given in Table 3. Notice that the faculties’ preferred time is a subset of their
available time using a questionnaire.

Table 3. PKNU UCSP instance 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒆𝒆𝒍𝒍𝒍𝒍𝑪𝑪𝒍𝒍 description.
Course Faculty Departme

nt
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑡𝑡𝑛𝑛 𝐶𝐶𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 𝑃𝑃𝑃𝑃𝑠𝑠𝑓𝑓𝑠𝑠𝑃𝑃𝑡𝑡𝑠𝑠𝑚𝑚𝑡𝑡

𝐶𝐶1 𝑃𝑃𝑃𝑃1 𝐷𝐷1 17th 20 Teaching 𝑇𝑇𝑆𝑆1
𝐶𝐶2 𝑃𝑃𝑃𝑃2 𝐷𝐷2 18th 21 Teaching 𝑇𝑇𝑆𝑆3
𝐶𝐶3 𝑃𝑃𝑃𝑃3 𝐷𝐷3 17th 34 Teaching 𝑇𝑇𝑆𝑆2
𝐶𝐶4 𝑃𝑃𝑃𝑃4 𝐷𝐷1 19th 25 Teaching 𝑇𝑇𝑆𝑆2
𝐶𝐶5 𝑃𝑃𝑃𝑃5 𝐷𝐷2 20th 25 Teaching 𝑇𝑇𝑆𝑆13
𝐶𝐶6 𝑃𝑃𝑃𝑃1 𝐷𝐷1 17th 40 Teaching 𝑇𝑇𝑆𝑆14
𝐶𝐶7 𝑃𝑃𝑃𝑃2 𝐷𝐷2 19th 20 Practice 𝑇𝑇𝑆𝑆5
𝐶𝐶8 𝑃𝑃𝑃𝑃4 𝐷𝐷1 21st 40 Practice 𝑇𝑇𝑆𝑆5

852 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

𝐶𝐶9 𝑃𝑃𝑃𝑃2 𝐷𝐷2 20th 20 Practice 𝑇𝑇𝑆𝑆9
𝐶𝐶10 𝑃𝑃𝑃𝑃6 𝐷𝐷4 18th 20 Practice 𝑇𝑇𝑆𝑆9
𝐶𝐶11 𝑃𝑃𝑃𝑃2 𝐷𝐷2 19th 10 Practice 𝑇𝑇𝑆𝑆5
𝐶𝐶12 𝑃𝑃𝑃𝑃2 𝐷𝐷2 20th 25 Teaching 𝑇𝑇𝑆𝑆5
𝐶𝐶13 𝑃𝑃𝑃𝑃6 𝐷𝐷4 22nd 5 Teaching 𝑇𝑇𝑆𝑆5
𝐶𝐶14 𝑃𝑃𝑃𝑃6 𝐷𝐷2 17th 25 Practice 𝑇𝑇𝑆𝑆3
𝐶𝐶15 𝑃𝑃𝑃𝑃5 𝐷𝐷2 18th 20 Practice 𝑇𝑇𝑆𝑆5
𝐶𝐶16 𝑃𝑃𝑃𝑃2 𝐷𝐷2 18th 25 Teaching 𝑇𝑇𝑆𝑆2
𝐶𝐶17 𝑃𝑃𝑃𝑃1 𝐷𝐷1 19th 35 Teaching 𝑇𝑇𝑆𝑆2

3.2 Solving PKNU UCSP Instance using The Proposed Method
The results use the proposed method for solving the PKNU-UCSP instance, as shown in Table
4. The results are shown with the format of the 𝐶𝐶𝑟𝑟𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠(𝐹𝐹𝑎𝑎𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠𝑓𝑓|𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝|𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟). The
results showed that the proposed method satisfied all hard and soft constraints. It arranges all
practice courses correctly and only uses three rooms, which reduces the management cost for
cleaning the room, delivering keys, etc. For instance, one room was arranged once at one
timeslot (H1). Assigning practice courses 𝐶𝐶7,𝐶𝐶8,𝐶𝐶9,𝐶𝐶10,𝐶𝐶14 at rooms 𝑅𝑅4, 𝑅𝑅1, 𝑅𝑅4, 𝑅𝑅4, 𝑅𝑅4 to
satisfy (H2), accordingly; Assigning 𝐶𝐶8 at 𝑅𝑅1, not 𝑅𝑅4, since applied 𝐶𝐶8 students are 40 and the
size of 𝑅𝑅4 is 25, which satisfies (H3). Besides, all professors and students only take one course
simultaneously (H4 and H5).

Table 4. Solving PKNU UCSP instance using the proposed method.

Moreover, the solution satisfies the most soft constraints. For instance, faculties 𝑃𝑃𝑃𝑃1, 𝑃𝑃𝑃𝑃2,
𝑎𝑎𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃4 like teaching in only one fixed room, 𝑅𝑅1 , which satisfies S1. Most courses are
arranged according to the faculty's preferred time (S2). Each faculty took courses in a sequence
mode (S3), while students who took courses are not (S4). Professor 𝑃𝑃𝑃𝑃1 likes teaching on
Friday in the same room, 𝑅𝑅1, in a sequence mode, but the students are not. Besides, the course
and room are arranged with the consistency of department, like 𝐶𝐶4 and 𝑅𝑅1 belonging to
department 𝐷𝐷1. However, some soft constraints have been broken out, such as 𝑃𝑃𝑃𝑃5 teaches 𝐶𝐶15
at 𝑅𝑅4 and 𝐶𝐶5 at 𝑅𝑅5 (S1).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 853

3.3 Comparative Analysis
To validate the effectiveness of the proposed method and explore each component’s
effectiveness for UCSP, we designed and compared the proposed method with other
optimization algorithms, including Tabu search algorithm [19], SA [20], and Tabu+SA
without first fit construction heuristic algorithm (Proposedwo).
 The scheduling scores, defined in Eq. (1), showed that all methods could solve the PKNU-
UCSP instance since they do not break out any hard constraints. However, the proposed
parallel Tabu+SA performs the best, obtaining the highest soft constraints score (4). All
methods broke once for S1 and received the same score of 25 for S2, except SA is 24. For S3
and S4, all methods broke out 17 or 18 times, and the proposed method outperforms the others
with a total score of 4. The performance of each comparative method is ranked as The
proposed>Tabu>Proposedwo>SA.
 From the findings, we can conclude that the usage of Tabu has improved by three scores,
and SA has improved by one score, which is conducted by comparing the proposed method
with SA and Tabu alone accordingly. Besides, the first fit could give the initial solution to help
the proposed method meet S5.

Fig. 2. The comparative results in terms of satisfied soft constraints

3.4 The Effectiveness of Parallel Structure Design
The proposed method adopts one parallel Tabu+SA structure to keep the diversity of the moves.
To validate its effectiveness, we compare the proposed method with the cascade Tabu and SA,
which is motivated by [16]. The results use scheduling scores, as shown in Fig. 3. The
proposed method has a parallel structure, while Proposedcascade has a cascade structure. The
settings of the Proposedcascade are identical to the proposed method except for the structure. The
results showed that the proposed method outperforms the cascade structure, which wins one
score in S1 soft constraint, and others are identical. Significantly, the proposed method only
breaks out once for S1 while the Proposedcascade breaks out twice, which causes more
inconvenience for the faculties.

854 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

Fig. 3. The effectiveness of parallel Tabu+SA structure.

 Moreover, we give the scheduling results of the cascade Tabu+SA structure to show the
difference, as shown in Table 5. Compared to the proposed method using parallel structure,
the cascade structure requires four rooms {𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅4,𝑅𝑅8} while the parallel structure only
requires three rooms {𝑅𝑅1 , 𝑅𝑅4, 𝑅𝑅5}, which reduces maintenance cost. Besides, the parallel
structure arranges all courses for faculty 𝑃𝑃𝑃𝑃1 on Friday, which satisfies the S1. However, the
cascade structure arranges them on Monday and Friday. These findings confirmed the
effectiveness of the proposed parallel structure. In addition, the results showed that the parallel
structure solves the PKNU-UCSP instance using 100.68 seconds while the cascade structure
spent 106.73 seconds, which proved that the proposed parallel structure is faster.

Table 5. Solving PKNU-UCSP instance using the Propsoedcascade.

Day
Timeslot

9:00-12:30 13:00-16:30 18:00-21:30
Monday 𝐶𝐶17(Pr1|19𝑠𝑠ℎ|𝑅𝑅1)

𝐶𝐶2(Pr2|18𝑠𝑠ℎ|𝑅𝑅4)
𝐶𝐶6(Pr1|17𝑠𝑠ℎ|𝑅𝑅1)
𝐶𝐶7(Pr2|19𝑠𝑠ℎ|𝑅𝑅4)

Tuesday
Wednesday 𝐶𝐶8(Pr4|21𝑠𝑠𝑠𝑠|𝑅𝑅1)

𝐶𝐶16(Pr2|18𝑠𝑠ℎ|𝑅𝑅4)
𝐶𝐶4(Pr4|19𝑠𝑠ℎ|𝑅𝑅1)
𝐶𝐶3(Pr3|17𝑠𝑠ℎ|𝑅𝑅2)

Thursday 𝐶𝐶14(Pr6|17𝑠𝑠ℎ|𝑅𝑅1)
𝐶𝐶15(Pr5|18𝑠𝑠ℎ|𝑅𝑅4)

𝐶𝐶10(Pr6|18𝑠𝑠ℎ|𝑅𝑅1)
𝐶𝐶5(Pr5|20𝑠𝑠ℎ|𝑅𝑅4)

𝐶𝐶13(Pr6|22𝑠𝑠𝑠𝑠|𝑅𝑅8)

Friday 𝐶𝐶12(Pr2|20𝑠𝑠ℎ|𝑅𝑅4) 𝐶𝐶1(Pr1|17𝑠𝑠ℎ|𝑅𝑅1)
𝐶𝐶11(Pr2|19𝑠𝑠ℎ|𝑅𝑅4)

𝐶𝐶16(Pr2|18𝑠𝑠ℎ|𝑅𝑅4)
𝐶𝐶9(Pr2|20𝑠𝑠ℎ|𝑅𝑅4)

3.5 The Effectiveness of Each Soft Constrain Weight
The fitness score given in Eq. (1) for the proposed method sets all soft constraints as the same
impact by default, that is, 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 𝑎𝑎4 = 𝑎𝑎5 = 1/−1 . We designed some sub-

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 855

experiments to explore its effectiveness. Significantly, the weights for each soft constraint are
set from 1 to 5, ignoring the positive or negative, causing the case of satisfying or breaking
decide it. The total score of each setting is given in Table 6. The x-axis sets all weights the
same from 1 to 5, while the y-axis sets different weights for each soft constraint. The results
with the format of 𝑁𝑁𝑠𝑠𝑆𝑆𝑟𝑟𝑃𝑃𝑠𝑠(𝑆𝑆𝑆𝑆1, 𝑆𝑆𝑆𝑆2, 𝑆𝑆𝑆𝑆3, 𝑆𝑆𝑆𝑆4, 𝑆𝑆𝑆𝑆5), where Nscore is a total normalized score
calculated using Eq. (3), one related score element-wise calculation. The 𝑊𝑊𝑠𝑠𝑝𝑝𝑊𝑊ℎ𝑠𝑠𝑠𝑠𝑣𝑣𝑡𝑡𝑖𝑖𝑡𝑡𝑜𝑜𝑛𝑛 is
one five-tuple vector that records the corresponding weights. For instance, the values of
𝑊𝑊𝑠𝑠𝑝𝑝𝑊𝑊ℎ𝑠𝑠𝑠𝑠𝑣𝑣𝑡𝑡𝑖𝑖𝑡𝑡𝑜𝑜𝑛𝑛 at 𝑎𝑎3=2 and 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎4 = 𝑎𝑎5 = 2 equals (2,2,2,2,2), and its Nscore =
−2
2

+ 50
2

+ −34
2

+ −34
2

+ 28
2

=4.

Table 6. The effectiveness of each soft constrain weight (‘-’ indicated did not break out the constrain)
Weight 1 2 3 4 5
𝑎𝑎1=1 4(-1,25,-17,-

17,14)
4(-3,52,-34,-

34,30)
5(-2,78,-51,-

51,45)
6(-2,108,-68,-

68,60)
6(-2,135,-85,-

85,75)
𝑎𝑎2=2 -25.5(-1,25,-

34,-17,14)
4(-2,50,-34,-

34,28)
5(-3,75,-34,-

51,42)
38(-4,100,-34,-

68,56)
51.7(-5,125,-

34,-85,70)
𝑎𝑎3=3 66.33(-3,78,-

17,-17,14)
24.17(-2,81,-

34,-34,26)
4(-3,75,-51,-

51,42)
-6.17(-,78,-68,-

68,56)
-15.73(-,78,-85,-

85,70)
𝑎𝑎4=4 4(-1,25,-17,-

68,14)
4(-2,50,-34,-

68,28)
4(-3,75,-51,-

68,42)
4(-4,100,-68,-

68,56)
4(-5,125,-85,-

68,70)
𝑎𝑎5=5 4(-2,25,-17,-

17,75)
-13(-6,52,-34,-

34,75)
6(-,78,-51,-

51,70)
9.5(-,104,-68,-

68,70)
4(-5,125,-85,-

85,70)

𝑁𝑁𝑠𝑠𝑆𝑆𝑟𝑟𝑃𝑃𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑟𝑟((SS1,SS2,SS3,SS4,SS5)
𝑊𝑊𝑡𝑡𝑠𝑠𝑔𝑔ℎ𝑡𝑡𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

) (3)

 The findings indicated that the proposed method is sensitive to soft constrain weights.
Setting the rate 𝑎𝑎1:𝑎𝑎2:𝑎𝑎3:𝑎𝑎4:𝑎𝑎5 with 3:1:1:1:1 receives the highest score of 66.33. Besides,
setting them in one same ratio performs the same, which receives four scores. Some cases,
such as 𝑎𝑎2=2 and others are 1, 𝑎𝑎3=3, and others are 4 or 5, 𝑎𝑎5=5, and others are 2, receive
negative scores that indicate they break out most soft constraints. However, it just takes a small
ratio, four out of 25 cases in total, which shows that the proposed method is easy to adjust.
The results suggested that we set a relatively big weight (3) for S3 and tiny weights (1) for
others that could receive the best results. The best timetabling results for the PKNU-UCSP
instance are given in Table 7. The most significant difference between Table 7 and Table 4
is that the faculties in the former teach the course in a remarkably continuous mode.

Table 7. Solving PKNU UCSP instance using the proposed method with the best parameters

Day
Timeslot

9:00-12:30 13:00-16:30 18:00-21:30
Monday 𝐶𝐶4(Pr4|19𝑠𝑠ℎ|𝑅𝑅1)

𝐶𝐶5(Pr5|20𝑠𝑠ℎ|𝑅𝑅4)
𝐶𝐶8(Pr4|21𝑠𝑠𝑠𝑠|𝑅𝑅1)
𝐶𝐶15(Pr5|18𝑠𝑠ℎ|𝑅𝑅4)

Tuesday 𝐶𝐶17(Pr1|19𝑠𝑠ℎ|𝑅𝑅1)
𝐶𝐶3(Pr3|17𝑠𝑠ℎ|𝑅𝑅2)

𝐶𝐶6(Pr1|17𝑠𝑠ℎ|𝑅𝑅1) 𝐶𝐶1(Pr1|17𝑠𝑠ℎ|𝑅𝑅1)

Wednesday 𝐶𝐶16(Pr2|18𝑠𝑠ℎ|𝑅𝑅4)
Thursday 𝐶𝐶7(Pr2|19𝑠𝑠ℎ|𝑅𝑅4) 𝐶𝐶9(Pr2|20𝑠𝑠ℎ|𝑅𝑅4) 𝐶𝐶2(Pr2|18𝑠𝑠ℎ|𝑅𝑅4)

Friday 𝐶𝐶14(Pr6|17𝑠𝑠ℎ|𝑅𝑅4) 𝐶𝐶12(Pr2|20𝑠𝑠ℎ|𝑅𝑅4)
𝐶𝐶13(Pr6|22𝑠𝑠𝑠𝑠|𝑅𝑅5)

𝐶𝐶10(Pr6|18𝑠𝑠ℎ|𝑅𝑅1)
𝐶𝐶11(Pr2|19𝑠𝑠ℎ|𝑅𝑅4)

856 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

3.6 The Generality of the Proposed Method
To validate the proposed method's generality for solving UCSP, we randomly generate 10

UCSP instances based on the PKNU-UCSP instance, described in Table 3 but the element
(course, timeslot, and room) will be randomly matched, the other configurations are same to
the original PKNU data set. The reason we did not compare the proposed method on other
public data sets is they have different constraints. It is hard to compare fairly without their
source codes. We generated 10 UCSP instances randomly but five times broke the hard
constraints for the room size caused by random matching (the room limitations). The
successful five-time average results that broke or satisfied soft constraints are shown in Fig. 4.
The findings indicated that the proposed method has a significant priority for solving UCSP.
Especially, it won four cases out of five constraints: S1, S2, S4, and S5 with average
satisfied/broken numbers of {-1.6,23.0,-15.60,7.80}, respectively. For the S3, the Tabu search
algorithm performs slightly better than the proposed method. Besides, we calculated the
normalized score for each UCSP instance to see their differences, as shown in Fig. 5. The
results indicated that the proposed method performs the best for all five instances. Especially
for the fourth instance, the proposed method receives a score of 6 while the other two are 2.
The average normalized score for five UCSP instances showed that the proposed method
received the highest score of 1.6 while SA and Tabu received scores of -0.4 and 0.4,
respectively. These findings confirmed the generality of the proposed method for solving
UCSP.

Fig. 4. The generality test based on ten random UCSP instances.

Fig. 5. The average timetabling score for each UCSP instance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 857

4. Conclusions
This paper presents one novel and practical approach, parallel Tabu+SA, to solve UCSP.
Firstly, it utilizes the first fit algorithm to give the initial solutions, and then one union change
move selector is designed to increase the diversity of potential moves. The Tabu search and
SA algorithms are designed in parallel to select the next move with the highest score. This
sound design fully uses Tabu search and SA to help the proposed method increase accuracy.
Besides, an adaptive decision selection algorithm is designed to select the next move from
Tabu and SA solutions automatically. The experimental verification based on the PKNU real
case and ten random UCSP instances verified the proposed method's effectiveness. Moreover,
one ablation study confirmed each component's effectiveness in the proposed method.
 In summary, the proposed method could solve USCP and easily transfer to other scheduling
problems. Besides, the proposed normalized score calculation could be utilized to compare
other optimization problems more fairly. In the future, we will test the proposed method’s
effectiveness on other optimization problems and develop one editable web application for
easy use. Also, we will compare the proposed method with more leading algorithms to validate
its effectiveness.

Acknowledgement
 Thanks to the officer at the department of the information system of PKNU, who assisted us
in collecting the data PKNU-UCSP to test the proposed method’s generality. The data can be
requested from the corresponding author on a reasonable basis.

References
[1] R. Tian, H. Si, Z. Guo, X. Zhao, and Y. Feng, “Realization of course scheduling system based on

improved genetic algorithm,” in Proc. of ICCSE 2021 - IEEE 16th Int. Conf. Comput. Sci. Educ.,
pp. 1072–1076, 2021. Article (CrossRef Link)

[2] N. Boland, B. D. Hughes, L. T. G. Merlot, and P. J. Stuckey, “New integer linear programming
approaches for course timetabling,” Comput. Oper. Res., vol. 35, no. 7, pp. 2209–2233, 2008.
Article (CrossRef Link)

[3] E. K. Burke and S. Petrovic, “Recent research directions in automated timetabling,” Eur. J. Oper.
Res., vol. 140, no. 2, pp. 266–280, 2002.Article (CrossRef Link)

[4] S. Imran Hossain, M. A. H. Akhand, M. I. R. Shuvo, N. Siddique, and H. Adeli, “Optimization of
University Course Scheduling Problem using Particle Swarm Optimization with Selective Search,”
Expert Syst. Appl., vol. 127, pp. 9–24, 2019. Article (CrossRef Link)

[5] M. Azmi Al-Betar and A. Tajudin Khader, “A hybrid harmony search for university course
timetabling,” in Proc. of Multidiscip. y Int. Conf. Sched. Theory Appl., no. August, pp. 10–12,
2009. Article (CrossRef Link)

[6] T. Gabel and M. Riedmiller, “Adaptive Reactive Job-Shop Scheduling With Reinforcement
Learning Agents,” Int. J. Inf. Technol. Intell. Comput., vol. 24, no. 4, 2008. Article (CrossRef Link)

[7] X. Shao and C. S. Kim, “Self-Supervised Long-Short Term Memory Network for Solving
Complex Job Shop Scheduling Problem,” KSII Trans. Internet Inf. Syst., vol. 15, no. 8, pp. 2993–
3010, 2021. Article (CrossRef Link)

[8] X. Shao and C. S. Kim, “An Adaptive Job Shop Scheduler Using Multilevel Convolutional Neural
Network and Iterative Local Search,” IEEE Access, vol. 10, pp. 88079–88092, 2022.
Article (CrossRef Link)

https://ieeexplore.ieee.org/document/9569620
https://doi.org/10.1016/j.cor.2006.10.016
https://doi.org/10.1016/S0377-2217(02)00069-3
https://doi.org/10.1016/j.eswa.2019.02.026
https://api.semanticscholar.org/CorpusID:18485704
https://api.semanticscholar.org/CorpusID:12059007
https://itiis.org/digital-library/24887
https://doi.org/doi:%2010.1109/ACCESS.2022.3188765

858 Shao et al.: A Novel and Effective University Course Scheduler
Using Adaptive Parallel Tabu Search and Simulated Annealing

[9] Y. Lan, Q. Zhai, X. Liu, and X. Guan, “Fast Stochastic Dual Dynamic Programming for Economic
Dispatch in Distribution Systems,” IEEE Trans. Power Syst., vol. 38, no. 4, pp. 3828–3840, 2022.
Article (CrossRef Link)

[10] G. Laporte, H. Mercure, and Y. Nobert, “Generalized travelling salesman problem through n sets
of nodes: the asymmetrical case,” Discret. Appl. Math., vol. 18, no. 2, pp. 185–197, 1987.
Article (CrossRef Link)

[11] S. Abbas, F. Ashraf, F. Jarad, M. S. Sardar, and I. Siddique, “A Drone-Based Blood Donation
Approach Using an Ant Colony Optimization Algorithm,” C. - Comput. Model. Eng. Sci., vol. 136,
no. 2, pp. 1917–1930, 2023. Article (CrossRef Link)

[12] A. Bashab et al., “Optimization Techniques in University Timetabling Problem: Constraints,
Methodologies, Benchmarks, and Open Issues,” Comput. Mater. Contin., vol. 74, no. 3, pp. 6461–
6484, 2023. Article (CrossRef Link)

[13] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the Flexible Job-shop
Scheduling Problem,” Comput. Oper. Res., vol. 35, no. 10, pp. 3202–3212, 2008.
Article (CrossRef Link)

[14] K. Dehghan-Sanej, M. Eghbali-Zarch, R. Tavakkoli-Moghaddam, S. M. Sajadi, and S. J. Sadjadi,
“Solving a new robust reverse job shop scheduling problem by meta-heuristic algorithms,” Eng.
Appl. Artif. Intell., vol. 101, p. 104207, 2021. Article (CrossRef Link)

[15] M. C. Gomes, A. P. Barbosa-Póvoa, and A. Q. Novais, “Optimal scheduling for flexible job shop
operation,” Int. J. Prod. Res., vol. 43, no. 11, pp. 2323–2353, 2005. Article (CrossRef Link)

[16] X. Li and L. Gao, “An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem,” Int. J. Prod. Econ., vol. 174, pp. 93–110, 2016. Article (CrossRef Link)

[17] G. R. Weckman, C. V. Ganduri, and D. A. Koonce, “A neural network job-shop scheduler,” J.
Intell. Manuf., vol. 19, no. 2, pp. 191–201, 2008. Article (CrossRef Link)

[18] S. Katoch, S. S. Chauhan, and V. Kumar, "A review on genetic algorithm: past, present, and
future," Multimedia Tools and Applications, vol. 80, pp. 8091-8126, 2021. Article (CrossRef Link)

[19] G. Fred, “Tabu Search: A Tutorial,” Interfaces (Providence), vol. 20, no. 4, pp. 74–94, 1990.
Article (CrossRef Link)

[20] B. Dimitirs and S. John, “Simulated annealing,” Stat. Sci., vol. 8, no. 1, pp. 10–15, 1993.
Article (CrossRef Link)

[21] L. Asadzadeh, “A local search genetic algorithm for the job shop scheduling problem with
intelligent agents,” Comput. Ind. Eng., vol. 85, pp. 376–383, 2015. Article (CrossRef Link)

[22] M. Kurdi, “An effective new island model genetic algorithm for job shop scheduling problem,”
Comput. Oper. Res., vol. 67, pp. 132–142, 2016. Article (CrossRef Link)

[23] B. Xu, P. A. Zhong, Y. F. Zhao, Y. Z. Zhu, and G. Q. Zhang, “Comparison between dynamic
programming and genetic algorithm for hydro unit economic load dispatch,” Water Sci. Eng., vol.
7, no. 4, pp. 420–432, 2014. Article (CrossRef Link)

[24] L. Gao, C. Peng, C. Zhou, and P. Li, “Solving flexible job-shop scheduling problem using general
particle swarm optimization,” in Proc. of 36th Int. Conf. Comput. Ind. Eng. ICC IE 2006, pp.
3018–3027, 2006. Article (CrossRef Link)

[25] W. Wisittipanich and V. Kachitvichyanukul, “Differential Evolution Algorithm for Job Shop
Scheduling Problem,” Ind. Eng. Manag. Syst., vol. 10, no. 3, pp. 203–208, 2011.
Article (CrossRef Link)

[26] H. W. Ge, L. Sun, Y. C. Liang, and F. Qian, “An effective PSO and AIS-based hybrid intelligent
algorithm for job-shop scheduling,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans, vol.
38, no. 2, pp. 358–368, 2008. Article (CrossRef Link)

[27] S. Abdullah and H. Turabieh, “Generating university course timetable using Genetic Algorithms
and local search,” in Proc. of 3rd Int. Conf. Converg. Hybrid Inf. Technol. ICCIT 2008, vol. 1, pp.
254–260, 2008. Article (CrossRef Link)

[28] F. H. Awad, A. Al-Kubaisi, and M. Mahmood, “Large-scale timetabling problems with adaptive
tabu search,” J. Intell. Syst., vol. 31, no. 1, pp. 168–176, 2022. Article (CrossRef Link)

[29] N. Leite, F. Melício, and A. C. Rosa, “A fast simulated annealing algorithm for the examination
timetabling problem,” Expert Syst. Appl., vol. 122, pp. 137–151, 2019. Article (CrossRef Link)

https://doi.org/doi:%2010.1109/TPWRS.2022.3204065
https://doi.org/10.1016/0166-218X(87)90020-5
https://doi.org/doi:%2010.32604/cmes.2023.024700
https://doi.org/%20doi:%2010.32604/cmc.2023.034051
https://doi.org/doi:%2010.1016/j.cor.2007.02.014
https://doi.org/doi:%2010.1016/j.engappai.2021.104207
https://doi.org/10.1080/00207540412331330101
https://doi.org/doi:%2010.1016/j.ijpe.2016.01.016
https://doi.org/doi:%2010.1007/s10845-008-0073-9
https://doi.org/10.1007/s11042-020-10139-6
https://www.ida.liu.se/%7Ezebpe83/heuristic/papers/TS_tutorial.pdf
http://www.mit.edu/%7Edbertsim/papers/Optimization/Simulated%20annealing.pdf
https://doi.org/10.1016/j.cie.2015.04.006
https://doi.org/10.1016/j.cor.2015.10.005
https://doi.org/10.3882/j.issn.1674-2370.2014.04.007
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b2ce5b095aa790d53a65dc2b90dc2d769fe7d5a6
https://doi.org/10.7232/iems.2011.10.3.203
https://doi.org/doi:%2010.1109/TSMCA.2007.914753
https://doi.org/doi:%2010.1109/ICCIT.2008.379
https://doi.org/doi:%2010.1515/jisys-2022-0003
https://doi.org/doi:%2010.1016/j.eswa.2018.12.048

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, April 2024 859

[30] R. M. Chen and H. F. Shih, “Solving university course timetabling problems using constriction
particle swarm optimization with local search,” Algorithms, vol. 6, no. 2, pp. 227–244, 2013.
Article (CrossRef Link)

[31] P. Kenekayoro, “Incorporating Machine Learning to Evaluate Solutions to the University Course
Timetabling Problem,” arXiv:2010.00826, 2020. Article (CrossRef Link)

[32] Turabieh, H., Abdullah, S., McCollum, B., McMullan, P., "Fish Swarm Intelligent Algorithm for
the Course Timetabling Problem," in Proc. of Rough Set and Knowledge Technology, RSKT 2010,
pp. 588-595, 2010. Article (CrossRef Link)

[33] Y. Nagata, “Random partial neighborhood search for the post-enrollment course timetabling
problem,” Comput. Oper. Res., vol. 90, pp. 84–96, 2018. Article (CrossRef Link)

[34] M. C. Chen, S. N. Sze, S. L. Goh, N. R. Sabar, and G. Kendall, “A Survey of University Course
Timetabling Problem: Perspectives, Trends and Opportunities,” IEEE Access, vol. 9, pp. 106515–
106529, 2021. Article (CrossRef Link)

[35] S. Ceschia, L. Di Gaspero, and A. Schaerf, “Educational timetabling: Problems, benchmarks, and
state-of-the-art results,” Eur. J. Oper. Res., vol. 308, no. 1, pp. 1–18, 2023. Article (CrossRef Link)

[36] A. A. Bertossi, L. V Mancini, and F. Rossini, “Fault-Tolerant Rate-Monotonic First-Fit Scheduling
in Hard-Real-Time Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 10, no.
9, pp. 934–945, 1999. Article (CrossRef Link)

[37] https://github.com/optapy/optapy.

Xiaorui Shao received his Ph. D degree in the department of information system from
Pukyong National University in 2022. His research interest includes the fault diagnosis, deep
learning, and job shop scheduling.

Su Yeon Lee She received her doctoral degree from the Department of Information Systems
Engineering at Pukyong National University in 2024. In 2016, she took office as CEO of
Jeongrok Co., Ltd. and is still working hard. Her current research interests include plasma,
environment, big data, and AI.

Chang-Soo Kim received Ph. D. degree in the Department of Computer Engineering from
Chung Ang University in 1991, Seoul, Korea. He became a professor in the Department of IT
Convergence and Application Engineering, Pukyong National University, Pusan, South Korea,
in 1992 and has continued until the present. He has been the Vice President of Korea
Multimedia Society since 2011. His current research interests include scheduling of smart
factories, big data simulation.

https://doi.org/doi:%2010.3390/a6020227
http://arxiv.org/abs/2010.00826
https://doi.org/10.1007/978-3-642-16248-0_80
https://doi.org/doi:%2010.1016/j.cor.2017.09.014
https://doi.org/doi:%2010.1109/ACCESS.2021.3100613
https://doi.org/doi:%2010.1016/j.ejor.2022.07.011
https://doi.org/doi:%2010.1109/71.798317

